
Worldwide, on-site Perl training & consulting • www.stonehenge.com

818 SW 3rd St #91, Portland, OR, 97204 • +1.503.777.0095Stonehenge

by brian d foy

Stonehenge Consulting Services, Inc.

version 1.6

February 2, 2009

Mastering

Perl

Worldwide, on-site Perl training & consulting • www.stonehenge.com

818 SW 3rd St #91, Portland, OR, 97204 • +1.503.777.0095Stonehenge

Table of Contents

Introduction
About this course Sec1:2

The path to mastery Sec1:3

Modulinos
Programs versus modules 5

Bring back main() 6

Tell Perl where to start 7

Make it a module 8

Who’s calling? 9

caller() in a module 10

Compile as a module, run as a program 11

Testing our program 12

Adding to the program 13

Packaging 15

Wrapper programs 16

Installing programs 17

Other methods 18

Distribute through CPAN 19

Conclusion 20

Further reading 21

Configuration
Configuration goals 23

Configuration techniques 24

The wrong way 25

Slightly better (still bad) 26

Environment variables 27

Set defaults 28

Perl’s Config 29

Command-line switches 30

perl’s -s switch 31

Getopt::Std and getopt 32

Getopt::Std and getopts 33

Getopt::Long 34

More GetOpt::Long 35

Extreme and odd cases 36

Configuration files 37

ConfigReader::Simple 38

INI Files 39

Config::IniFiles 40

Config::Scoped 41

AppConfig 42

Using the program name 43

By operating system 44

Writing your own interface 45

Good method names 46

Further reading 47

Lightweight Persistence
Persistence 49

Worldwide, on-site Perl training & consulting • www.stonehenge.com

818 SW 3rd St #91, Portland, OR, 97204 • +1.503.777.0095Stonehenge

Redefine subs in other packages 77

Export subroutines 78

Create new subs with AUTOLOAD 79

Mock subroutines 80

Fixing modules 81

Wrapping subroutines 82

Subroutines as arguments 83

Summary 84

Further reading 85

Logging
Log without changing the program 87

Two major modules 88

The :easy way 89

Logging levels 90

Something more complex 91

Configuring Log4perl 92

Appenders handle the magic 93

Logging to a database 94

Changing configuration on-the-fly 95

Send to screen and file at once 96

Multiple loggers 97

Further reading 98

Profiling
Profiling is better than benchmarking 100

A recursive subroutine 101

Calling a Profiler 102

Perl structures as text 50

Using my own name 51

Nicer output 52

Reading Data::Dumper text 53

YAML Ain’t Markup 54

YAML format 55

Reading in YAML 56

Storable 57

Reading Storable files 58

Freezing and thawing 59

Storing multiple values 60

Deep copies 61

dbm files (old, trusty) 62

A better DBM 63

Further reading 64

Dynamic Subroutines
Just what is “dynamic”? 66

You’re soaking in it! 67

A typical dispatch table 68

A review of subroutine references 69

Subroutines as data 70

Add additional operators 71

Create pipelines 72

Validate data with pipelines 73

Store the validation profile as text 74

Serialize my code 75

Replace named subroutines 76

Worldwide, on-site Perl training & consulting • www.stonehenge.com

818 SW 3rd St #91, Portland, OR, 97204 • +1.503.777.0095Stonehenge

Possible metrics 130

Devel::Peek 131

Memory use 132

About Benchmark.pm 133

Time a single bit of code 134

Compare several bits of code 135

Common misuse 136

Do these numbers make sense? 137

Report the situation 138

Do something useful 139

Now the results make sense 140

Verify with an experiment 141

Benchmarking summary 142

Further reading 143

Conclusion
Main points 145

More information 146

Questions

Recursion profile 103

Iteration, not recursion 104

Iteration profile 105

Really big numbers 106

Memoize 107

What happened? 108

More complex profiling 109

Modern profiling with NYTProf 110

The basics of profiling 111

Record DBI queries 112

Database optimization 113

Profiling DBI Statements 114

Profiling DBI methods 115

Profiling test suites 116

Devel::Cover HTML report 117

Devel::Cover detail 118

Further reading 119

Benchmarking
Measuring Perl 121

Theory of measurement 122

Know where you are 123

Using benchmarks 124

Single points 125

Multiple points 126

All things being equal 127

Don’t benchmark languages 128

Definitions of performance 129

Worldwide, on-site Perl training & consulting • www.stonehenge.com

818 SW 3rd St #91, Portland, OR, 97204 • +1.503.777.0095Stonehenge

by brian d foy

Stonehenge Consulting Services, Inc.

version 1.6

February 2, 2009

Mastering

Perl

1

Worldwide, on-site Perl training & consulting • www.stonehenge.com

818 SW 3rd St #91, Portland, OR, 97204 • +1.503.777.0095Stonehenge

Introduction

2

Worldwide, on-site Perl training & consulting • www.stonehenge.com

818 SW 3rd St #91, Portland, OR, 97204 • +1.503.777.0095

1 • Introduction

Stonehenge

Selected topics for the working programmer based on • Mastering Perl

Mostly not about syntax or wizardly tricks•

Not for masters, but people who want to control Perl code•

Not necessarily the way to do it, just the way I’ve done it•

Create “professional”, robust programs other people can use•

We’ll cover•

profiling*

benchmarking*

configuration*

logging*

lightweight persistence*

About this course

3

Worldwide, on-site Perl training & consulting • www.stonehenge.com

818 SW 3rd St #91, Portland, OR, 97204 • +1.503.777.0095

1 • Introduction

Stonehenge

The guild system had a progression of skills•

Apprentices were the beginners and worked with supervision•

Journeymen were competent in their trade•

Masters taught journeymen•

Journeymen studied under different masters•

different masters teach different tricks and methods*

journeyman develop their own style*

A masterpiece showed that a journeyman mastered his trade•

The path to mastery

	Introduction
	About this course
	The path to mastery

	Modulinos
	Programs versus modules
	Bring back main()
	Tell Perl where to start
	Make it a module
	Who’s calling?
	caller() in a module
	Compile as a module, run as a program
	Testing our program
	Adding to the program
	Packaging
	Wrapper programs
	Installing programs
	Other methods
	Distribute through CPAN
	Conclusion
	Further reading

	Configuration
	Configuration goals
	Configuration techniques
	The wrong way
	Slightly better (still bad)
	Environment variables
	Set defaults
	Perl’s Config
	Command-line switches
	perl’s -s switch
	Getopt::Std and getopt
	Getopt::Std and getopts
	Getopt::Long
	More GetOpt::Long
	Extreme and odd cases
	Configuration files
	ConfigReader::Simple
	INI Files
	Config::IniFiles
	Config::Scoped
	AppConfig
	Using the program name
	By operating system
	Writing your own interface
	Good method names
	Further reading

	Lightweight Persistence
	Persistence
	Perl structures as text
	Using my own name
	Nicer output
	Reading Data::Dumper text
	YAML Ain’t Markup
	YAML format
	Reading in YAML
	Storable
	Reading Storable files
	Freezing and thawing
	Storing multiple values
	Deep copies
	dbm files (old, trusty)
	A better DBM
	Further reading

	Dynamic Subroutines
	Just what is “dynamic”?
	You’re soaking in it!
	A typical dispatch table
	A review of subroutine references
	Subroutines as data
	Add additional operators
	Create pipelines
	Validate data with pipelines
	Store the validation profile as text
	Serialize my code
	Replace named subroutines
	Redefine subs in other packages
	Export subroutines
	Create new subs with AUTOLOAD
	Mock subroutines
	Fixing modules
	Wrapping subroutines
	Subroutines as arguments
	Summary
	Further reading

	Logging
	Log without changing the program
	Two major modules
	The :easy way
	Logging levels
	Something more complex
	Configuring Log4perl
	Appenders handle the magic
	Logging to a database
	Changing configuration on-the-fly
	Send to screen and file at once
	Multiple loggers
	Further reading

	Profiling
	Profiling is better than benchmarking
	A recursive subroutine
	Calling a Profiler
	Recursion profile
	Iteration, not recursion
	Iteration profile
	Really big numbers
	Memoize
	What happened?
	More complex profiling
	Modern profiling with NYTProf
	The basics of profiling
	Record DBI queries
	Database optimization
	Profiling DBI Statements
	Profiling DBI methods
	Profiling test suites
	Devel::Cover HTML report
	Devel::Cover detail
	Further reading

	Benchmarking
	Measuring Perl
	Theory of measurement
	Know where you are
	Using benchmarks
	Single points
	Multiple points
	All things being equal
	Don’t benchmark languages
	Definitions of performance
	Possible metrics
	Devel::Peek
	Memory use
	About Benchmark.pm
	Time a single bit of code
	Compare several bits of code
	Common misuse
	Do these numbers make sense?
	Report the situation
	Do something useful
	Now the results make sense
	Verify with an experiment
	Benchmarking summary
	Further reading

	Conclusion
	Main points
	More information

	Questions

