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1 • Introduction

Stonehenge

Selected topics for the working programmer based on • Mastering Perl

Mostly not about syntax or wizardly tricks• 

Not for masters, but people who want to control Perl code• 

Not necessarily the way to do it, just the way I’ve done it• 

Create “professional”, robust programs other people can use• 

We’ll cover• 

profiling* 

benchmarking* 

configuration* 

logging* 

lightweight persistence* 

About this course



3

Worldwide, on-site Perl training & consulting • www.stonehenge.com

818 SW 3rd St #91, Portland, OR, 97204 •  +1.503.777.0095

1 • Introduction

Stonehenge

The guild system had a progression of skills• 

Apprentices were the beginners and worked with supervision• 

Journeymen were competent in their trade• 

Masters taught journeymen• 

Journeymen studied under different masters• 

different masters teach different tricks and methods* 

journeyman develop their own style* 

A masterpiece showed that a journeyman mastered his trade• 

The path to mastery
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